Tidy Characterizations of Model Performance


[Up] [Top]

Documentation for package ‘yardstick’ version 1.2.0

Help Pages

A B C D F G H I J K L M N P R S T V Y

-- A --

accuracy Accuracy
accuracy.data.frame Accuracy
accuracy_vec Accuracy
average_precision Area under the precision recall curve
average_precision.data.frame Area under the precision recall curve
average_precision_vec Area under the precision recall curve

-- B --

bal_accuracy Balanced accuracy
bal_accuracy.data.frame Balanced accuracy
bal_accuracy_vec Balanced accuracy
brier_class Brier score for classification models
brier_class.data.frame Brier score for classification models
brier_class_vec Brier score for classification models

-- C --

ccc Concordance correlation coefficient
ccc.data.frame Concordance correlation coefficient
ccc_vec Concordance correlation coefficient
check_class_metric Developer function for checking inputs in new metrics
check_dynamic_survival_metric Developer function for checking inputs in new metrics
check_metric Developer function for checking inputs in new metrics
check_numeric_metric Developer function for checking inputs in new metrics
check_prob_metric Developer function for checking inputs in new metrics
check_static_survival_metric Developer function for checking inputs in new metrics
classification_cost Costs function for poor classification
classification_cost.data.frame Costs function for poor classification
classification_cost_vec Costs function for poor classification
class_metric_summarizer Developer function for summarizing new metrics
conf_mat Confusion Matrix for Categorical Data
conf_mat.data.frame Confusion Matrix for Categorical Data
conf_mat.default Confusion Matrix for Categorical Data
conf_mat.table Confusion Matrix for Categorical Data
curve_metric_summarizer Developer function for summarizing new metrics
curve_survival_metric_summarizer Developer function for summarizing new metrics

-- D --

detection_prevalence Detection prevalence
detection_prevalence.data.frame Detection prevalence
detection_prevalence_vec Detection prevalence
developer-helpers Developer helpers
dots_to_estimate Developer helpers
dynamic_survival_metric_summarizer Developer function for summarizing new metrics

-- F --

finalize_estimator Developer helpers
finalize_estimator_internal Developer helpers
f_meas F Measure
f_meas.data.frame F Measure
f_meas_vec F Measure

-- G --

gain_capture Gain capture
gain_capture.data.frame Gain capture
gain_capture_vec Gain capture
gain_curve Gain curve
gain_curve.data.frame Gain curve
get_weights Developer helpers

-- H --

hpc_cv Multiclass Probability Predictions
huber_loss Huber loss
huber_loss.data.frame Huber loss
huber_loss_pseudo Psuedo-Huber Loss
huber_loss_pseudo.data.frame Psuedo-Huber Loss
huber_loss_pseudo_vec Psuedo-Huber Loss
huber_loss_vec Huber loss

-- I --

iic Index of ideality of correlation
iic.data.frame Index of ideality of correlation
iic_vec Index of ideality of correlation

-- J --

j_index J-index
j_index.data.frame J-index
j_index_vec J-index

-- K --

kap Kappa
kap.data.frame Kappa
kap_vec Kappa

-- L --

lift_curve Lift curve
lift_curve.data.frame Lift curve
lung_surv Survival Analysis Results

-- M --

mae Mean absolute error
mae.data.frame Mean absolute error
mae_vec Mean absolute error
mape Mean absolute percent error
mape.data.frame Mean absolute percent error
mape_vec Mean absolute percent error
mase Mean absolute scaled error
mase.data.frame Mean absolute scaled error
mase_vec Mean absolute scaled error
mcc Matthews correlation coefficient
mcc.data.frame Matthews correlation coefficient
mcc_vec Matthews correlation coefficient
metric-summarizers Developer function for summarizing new metrics
metrics General Function to Estimate Performance
metrics.data.frame General Function to Estimate Performance
metric_set Combine metric functions
metric_tweak Tweak a metric function
mn_log_loss Mean log loss for multinomial data
mn_log_loss.data.frame Mean log loss for multinomial data
mn_log_loss_vec Mean log loss for multinomial data
mpe Mean percentage error
mpe.data.frame Mean percentage error
mpe_vec Mean percentage error
msd Mean signed deviation
msd.data.frame Mean signed deviation
msd_vec Mean signed deviation

-- N --

new-metric Construct a new metric function
new_class_metric Construct a new metric function
new_dynamic_survival_metric Construct a new metric function
new_integrated_survival_metric Construct a new metric function
new_numeric_metric Construct a new metric function
new_prob_metric Construct a new metric function
new_static_survival_metric Construct a new metric function
npv Negative predictive value
npv.data.frame Negative predictive value
npv_vec Negative predictive value
numeric_metric_summarizer Developer function for summarizing new metrics

-- P --

pathology Liver Pathology Data
poisson_log_loss Mean log loss for Poisson data
poisson_log_loss.data.frame Mean log loss for Poisson data
poisson_log_loss_vec Mean log loss for Poisson data
ppv Positive predictive value
ppv.data.frame Positive predictive value
ppv_vec Positive predictive value
precision Precision
precision.data.frame Precision
precision_vec Precision
prob_metric_summarizer Developer function for summarizing new metrics
pr_auc Area under the precision recall curve
pr_auc.data.frame Area under the precision recall curve
pr_auc_vec Area under the precision recall curve
pr_curve Precision recall curve
pr_curve.data.frame Precision recall curve

-- R --

recall Recall
recall.data.frame Recall
recall_vec Recall
rmse Root mean squared error
rmse.data.frame Root mean squared error
rmse_vec Root mean squared error
roc_auc Area under the receiver operator curve
roc_auc.data.frame Area under the receiver operator curve
roc_auc_vec Area under the receiver operator curve
roc_aunp Area under the ROC curve of each class against the rest, using the a priori class distribution
roc_aunp.data.frame Area under the ROC curve of each class against the rest, using the a priori class distribution
roc_aunp_vec Area under the ROC curve of each class against the rest, using the a priori class distribution
roc_aunu Area under the ROC curve of each class against the rest, using the uniform class distribution
roc_aunu.data.frame Area under the ROC curve of each class against the rest, using the uniform class distribution
roc_aunu_vec Area under the ROC curve of each class against the rest, using the uniform class distribution
roc_curve Receiver operator curve
roc_curve.data.frame Receiver operator curve
rpd Ratio of performance to deviation
rpd.data.frame Ratio of performance to deviation
rpd_vec Ratio of performance to deviation
rpiq Ratio of performance to inter-quartile
rpiq.data.frame Ratio of performance to inter-quartile
rpiq_vec Ratio of performance to inter-quartile
rsq R squared
rsq.data.frame R squared
rsq_trad R squared - traditional
rsq_trad.data.frame R squared - traditional
rsq_trad_vec R squared - traditional
rsq_vec R squared

-- S --

sens Sensitivity
sens.data.frame Sensitivity
sensitivity Sensitivity
sensitivity.data.frame Sensitivity
sensitivity_vec Sensitivity
sens_vec Sensitivity
smape Symmetric mean absolute percentage error
smape.data.frame Symmetric mean absolute percentage error
smape_vec Symmetric mean absolute percentage error
solubility_test Solubility Predictions from MARS Model
spec Specificity
spec.data.frame Specificity
specificity Specificity
specificity.data.frame Specificity
specificity_vec Specificity
spec_vec Specificity
static_survival_metric_summarizer Developer function for summarizing new metrics
summary.conf_mat Summary Statistics for Confusion Matrices

-- T --

tidy.conf_mat Confusion Matrix for Categorical Data
two_class_example Two Class Predictions

-- V --

validate_estimator Developer helpers

-- Y --

yardstick_any_missing Developer function for handling missing values in new metrics
yardstick_remove_missing Developer function for handling missing values in new metrics