A B C D F G H I J K L M N P R S T V Y
accuracy | Accuracy |
accuracy.data.frame | Accuracy |
accuracy_vec | Accuracy |
average_precision | Area under the precision recall curve |
average_precision.data.frame | Area under the precision recall curve |
average_precision_vec | Area under the precision recall curve |
bal_accuracy | Balanced accuracy |
bal_accuracy.data.frame | Balanced accuracy |
bal_accuracy_vec | Balanced accuracy |
brier_class | Brier score for classification models |
brier_class.data.frame | Brier score for classification models |
brier_class_vec | Brier score for classification models |
ccc | Concordance correlation coefficient |
ccc.data.frame | Concordance correlation coefficient |
ccc_vec | Concordance correlation coefficient |
check_class_metric | Developer function for checking inputs in new metrics |
check_dynamic_survival_metric | Developer function for checking inputs in new metrics |
check_metric | Developer function for checking inputs in new metrics |
check_numeric_metric | Developer function for checking inputs in new metrics |
check_prob_metric | Developer function for checking inputs in new metrics |
check_static_survival_metric | Developer function for checking inputs in new metrics |
classification_cost | Costs function for poor classification |
classification_cost.data.frame | Costs function for poor classification |
classification_cost_vec | Costs function for poor classification |
class_metric_summarizer | Developer function for summarizing new metrics |
conf_mat | Confusion Matrix for Categorical Data |
conf_mat.data.frame | Confusion Matrix for Categorical Data |
conf_mat.default | Confusion Matrix for Categorical Data |
conf_mat.table | Confusion Matrix for Categorical Data |
curve_metric_summarizer | Developer function for summarizing new metrics |
curve_survival_metric_summarizer | Developer function for summarizing new metrics |
detection_prevalence | Detection prevalence |
detection_prevalence.data.frame | Detection prevalence |
detection_prevalence_vec | Detection prevalence |
developer-helpers | Developer helpers |
dots_to_estimate | Developer helpers |
dynamic_survival_metric_summarizer | Developer function for summarizing new metrics |
finalize_estimator | Developer helpers |
finalize_estimator_internal | Developer helpers |
f_meas | F Measure |
f_meas.data.frame | F Measure |
f_meas_vec | F Measure |
gain_capture | Gain capture |
gain_capture.data.frame | Gain capture |
gain_capture_vec | Gain capture |
gain_curve | Gain curve |
gain_curve.data.frame | Gain curve |
get_weights | Developer helpers |
hpc_cv | Multiclass Probability Predictions |
huber_loss | Huber loss |
huber_loss.data.frame | Huber loss |
huber_loss_pseudo | Psuedo-Huber Loss |
huber_loss_pseudo.data.frame | Psuedo-Huber Loss |
huber_loss_pseudo_vec | Psuedo-Huber Loss |
huber_loss_vec | Huber loss |
iic | Index of ideality of correlation |
iic.data.frame | Index of ideality of correlation |
iic_vec | Index of ideality of correlation |
j_index | J-index |
j_index.data.frame | J-index |
j_index_vec | J-index |
kap | Kappa |
kap.data.frame | Kappa |
kap_vec | Kappa |
lift_curve | Lift curve |
lift_curve.data.frame | Lift curve |
lung_surv | Survival Analysis Results |
mae | Mean absolute error |
mae.data.frame | Mean absolute error |
mae_vec | Mean absolute error |
mape | Mean absolute percent error |
mape.data.frame | Mean absolute percent error |
mape_vec | Mean absolute percent error |
mase | Mean absolute scaled error |
mase.data.frame | Mean absolute scaled error |
mase_vec | Mean absolute scaled error |
mcc | Matthews correlation coefficient |
mcc.data.frame | Matthews correlation coefficient |
mcc_vec | Matthews correlation coefficient |
metric-summarizers | Developer function for summarizing new metrics |
metrics | General Function to Estimate Performance |
metrics.data.frame | General Function to Estimate Performance |
metric_set | Combine metric functions |
metric_tweak | Tweak a metric function |
mn_log_loss | Mean log loss for multinomial data |
mn_log_loss.data.frame | Mean log loss for multinomial data |
mn_log_loss_vec | Mean log loss for multinomial data |
mpe | Mean percentage error |
mpe.data.frame | Mean percentage error |
mpe_vec | Mean percentage error |
msd | Mean signed deviation |
msd.data.frame | Mean signed deviation |
msd_vec | Mean signed deviation |
new-metric | Construct a new metric function |
new_class_metric | Construct a new metric function |
new_dynamic_survival_metric | Construct a new metric function |
new_integrated_survival_metric | Construct a new metric function |
new_numeric_metric | Construct a new metric function |
new_prob_metric | Construct a new metric function |
new_static_survival_metric | Construct a new metric function |
npv | Negative predictive value |
npv.data.frame | Negative predictive value |
npv_vec | Negative predictive value |
numeric_metric_summarizer | Developer function for summarizing new metrics |
pathology | Liver Pathology Data |
poisson_log_loss | Mean log loss for Poisson data |
poisson_log_loss.data.frame | Mean log loss for Poisson data |
poisson_log_loss_vec | Mean log loss for Poisson data |
ppv | Positive predictive value |
ppv.data.frame | Positive predictive value |
ppv_vec | Positive predictive value |
precision | Precision |
precision.data.frame | Precision |
precision_vec | Precision |
prob_metric_summarizer | Developer function for summarizing new metrics |
pr_auc | Area under the precision recall curve |
pr_auc.data.frame | Area under the precision recall curve |
pr_auc_vec | Area under the precision recall curve |
pr_curve | Precision recall curve |
pr_curve.data.frame | Precision recall curve |
recall | Recall |
recall.data.frame | Recall |
recall_vec | Recall |
rmse | Root mean squared error |
rmse.data.frame | Root mean squared error |
rmse_vec | Root mean squared error |
roc_auc | Area under the receiver operator curve |
roc_auc.data.frame | Area under the receiver operator curve |
roc_auc_vec | Area under the receiver operator curve |
roc_aunp | Area under the ROC curve of each class against the rest, using the a priori class distribution |
roc_aunp.data.frame | Area under the ROC curve of each class against the rest, using the a priori class distribution |
roc_aunp_vec | Area under the ROC curve of each class against the rest, using the a priori class distribution |
roc_aunu | Area under the ROC curve of each class against the rest, using the uniform class distribution |
roc_aunu.data.frame | Area under the ROC curve of each class against the rest, using the uniform class distribution |
roc_aunu_vec | Area under the ROC curve of each class against the rest, using the uniform class distribution |
roc_curve | Receiver operator curve |
roc_curve.data.frame | Receiver operator curve |
rpd | Ratio of performance to deviation |
rpd.data.frame | Ratio of performance to deviation |
rpd_vec | Ratio of performance to deviation |
rpiq | Ratio of performance to inter-quartile |
rpiq.data.frame | Ratio of performance to inter-quartile |
rpiq_vec | Ratio of performance to inter-quartile |
rsq | R squared |
rsq.data.frame | R squared |
rsq_trad | R squared - traditional |
rsq_trad.data.frame | R squared - traditional |
rsq_trad_vec | R squared - traditional |
rsq_vec | R squared |
sens | Sensitivity |
sens.data.frame | Sensitivity |
sensitivity | Sensitivity |
sensitivity.data.frame | Sensitivity |
sensitivity_vec | Sensitivity |
sens_vec | Sensitivity |
smape | Symmetric mean absolute percentage error |
smape.data.frame | Symmetric mean absolute percentage error |
smape_vec | Symmetric mean absolute percentage error |
solubility_test | Solubility Predictions from MARS Model |
spec | Specificity |
spec.data.frame | Specificity |
specificity | Specificity |
specificity.data.frame | Specificity |
specificity_vec | Specificity |
spec_vec | Specificity |
static_survival_metric_summarizer | Developer function for summarizing new metrics |
summary.conf_mat | Summary Statistics for Confusion Matrices |
tidy.conf_mat | Confusion Matrix for Categorical Data |
two_class_example | Two Class Predictions |
validate_estimator | Developer helpers |
yardstick_any_missing | Developer function for handling missing values in new metrics |
yardstick_remove_missing | Developer function for handling missing values in new metrics |